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ABSTRACT: Head direction cells change their firing rates as a function
of the orientation of an animal within an environment. Typically, these
cells display a unimodal tuning curve with maximal firing at the cell’s
preferred direction. As different cells have different preferred directions,
the population of cells has been hypothesized to represent the orientation
of the animal within the environment. Previous research has shown that
pairs of simultaneously recorded head direction cells respond similarly to
cue manipulations, suggesting that a population of head direction cells
acts in concert to represent the animal’s orientation within its environ-
ment. Ensembles of head direction cells were recorded from the postsub-
iculum from rats foraging in an open field. Directional responses of each
cell were quantified by the nonparametric Watson’s U2 statistic, a mea-
sure which makes no explicit assumptions of tuning curve shape. Direc-
tionally responsive cells were then used to reconstruct each animal’s
orientation within the open field using population vector, optimal-linear
estimator, and Bayesian methods. The results indicated that postsubicu-
lum contained a complete representation of the animal’s orientation. The
internal consistency of a neural ensemble can be assessed by comparing
the ensemble activity to the expected activity given the reconstructed
orientation. This has been termed the “coherency” of the neural ensem-
ble. Reconstruction error decreased as the coherency of the orienta-
tion representation increased, indicating that coherency could be used
to measure a level of confidence in the representation quality. Be-
cause coherency is a linear measure dependent only on internal vari-
ables, coherency may be a behaviorally relevant measure used to
ascertain the animal’s confidence in its representation of orientation.
© 2004 Wiley-Liss, Inc.
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INTRODUCTION

Head direction cells respond to the orientation of an animal’s head in the
horizontal plane of its environment but show no dependence on the animal’s
location (Ranck, 1984). As defined by Taube et al. (1990a), each head-
direction (HD) cell shows peak firing at a preferred direction and a mono-
tonic fall-off as the orientation varies from that preferred direction. These
cells have baseline-to-baseline tuning curve widths of 100° (Taube et al.,
1990a) and can be modeled as Gaussians with an average standard deviation

of 66° (Blair and Sharp, 1995). In rodents, HD cells have
been found in postsubiculum (Taube et al., 1990a,b;
Sharp, 1996), in the anterior dorsal thalamic nuclei (Blair
and Sharp, 1995; Knierim et al., 1995; Taube, 1995;
Blair et al., 1997), in the lateral mammillary nuclei (Blair
et al., 1998; Stackman and Taube, 1998), as well as the
dorsal tegmental nucleus of Gudden (Sharp et al.,
2001b), the lateral dorsal nucleus of the thalamus (Mizu-
mori and Williams, 1993), the striatum (Wiener, 1993;
Ragozzino et al., 2001), and the retrosplenial cortex
(Chen et al., 1994a,b).

HD cells were first detected in the postsubiculum
(Ranck, 1984; Taube et al., 1990a). Controls showed
that these tuning curves were independent of behavioral
state and of the position of the animal and that the dis-
tribution of preferred directions was approximately uni-
form (Taube et al., 1990a). From 26% (Taube et al.,
1990a) to 37% (Sharp, 1996) of postsubicular cells were
found to be unimodal HD cells of the type defined by
Taube et al. (1990a), however, Sharp (1996) reports that
89% of postsubicular cells showed a significant relation-
ship between firing rate and the animal’s head direction.
Generally, HD cells have been recorded as animals for-
aged for food in a small cylinder (�1 m in diameter) with
a cue card subtending about 90° (Taube et al., 1990a,b;
Taube, 1995; Knierim et al., 1995, 1998; Blair and
Sharp, 1995, 1996; Cho and Sharp, 2001; Zugaro et al.,
2003), but they have also been recorded in the standard
eight-arm maze task (Chen et al., 1994a,b; Mizumori et
al., 1999) and in more complex tasks in small environ-
ments (Wiener, 1993).

Rotations of external cues produce a corresponding rota-
tion in the preferred directions of the recorded cells (Taube
et al., 1990b). However, postsubicular HD cells continue to
show normal tuning curves after removal of the cue card
(Taube et al., 1990b) and in the dark (Taube et al., 1996).
Postsubicular HD cells are dependent on anterior thalamic
integrity (Goodridge and Taube, 1997) and anterior tha-
lamic HD cells are dependent on lateral mammillary integ-
rity (Blair et al., 1999). Postsubicular cells are also intercon-
nected with the lateral dorsal nucleus (LDN) of the
thalamus and with the retrosplenial cortex (van Groen and
Wyss, 1990). In addition, postsubicular integrity is neces-
sary for certain navigation tasks (Taube et al., 1992), and for
the sensitivity of anterior thalamic head direction cells to
cues (Goodridge and Taube, 1997). Animals with postsub-
icular lesions were significantly impaired at both the eight-
arm radial maze and the hidden-platform water maze
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(Taube et al., 1992). With postsubicular lesions, anterior thalamic
cells continued to show HD tuning curves (although the tuning curves
did broaden significantly), but they no longer followed cue card rota-
tions (Goodridge and Taube, 1997). Anterior thalamic HD cells also
showed more intrasession drift after postsubicular lesions than before
(Goodridge and Taube, 1997). Thus, the postsubiculum is a critical
component in the association between external cues and the internal
head direction signal, and it should be possible to reconstruct the head
direction of the animal from an ensemble of postsubicular HD cells.

Observations of head direction cell dynamics suggest HD cells
act in concert and form a head direction system. Individual HD
cells tend to show similar responses to manipulations (Taube et al.,
1990b; Taube, 1995; Blair and Sharp, 1995). Studies in which
pairs of HD cells have been simultaneously recorded (Taube et al.,
1990b; Goodridge and Taube, 1995; Taube and Burton, 1995;
Taube et al., 1996) have shown that pairs have responded similarly
to environmental changes, suggesting that the set of HD cells work
as an integrated system. Simultaneous recordings of HD and place
cells have also suggested that they respond similarly to environ-
mental manipulations (Knierim et al., 1998).

Research on head direction has benefited from a close interplay
between theoretical models and experimental findings. Initial charac-
terization of HD cells led to a model of the head direction system
based on dead-reckoning or path integration of external and idiothetic
cues (McNaughton et al., 1991). Attractor-based models of head di-
rection (Skaggs et al., 1995; Redish et al., 1996; Zhang, 1996) were
then developed in an effort to understand the dynamic properties of
the head direction system. Attractor network models are composed of
local excitatory and global inhibitory connections and represent head
direction as a bump of activity with the cell population. These models
are capable of producing realistic tuning curves while tracking realistic
rotations (Redish et al., 1996; Redish, 1999; Goodridge and
Touretzky, 2000; Sharp et al., 2001a).

Information encoded by HD cells suggest the presence of a com-
plete orientation signal. If such a signal exists within a population, it
should be possible to reconstruct the signal from the firing patterns
within the population (Georgopoulos et al., 1983; Wilson and Mc-
Naughton, 1993; Rieke et al., 1997). Reconstruction has been used
widely to test theories of population encoding in other biological sys-
tems (motor cortex: Georgopoulos et al., 1983; hippocampal place
cells: Wilson and McNaughton, 1993; Zhang et al., 1998; Brown et
al., 1998; Jensen and Lisman, 2000; LGN: Stanley et al., 1999). In the
head direction system, it has only been used in models (Redish et al.,
1996), because of the difficulty of recording an ensemble of HD cells.
In this report we present the first neural ensembles of simultaneously
recorded HD cells, and show that it is possible to reconstruct the rat
head direction signal from those ensembles. Some of this work has
been previously presented in abstract form (Johnson et al., 2003).

MATERIALS AND METHODS

Experimental Subjects

The subjects were two male, Brown-Norway/Fisher-344 hybrid
rats (Harlan, Indianapolis IN). At the beginning of recordings, the

rats were 13–15 months of age. During behavioral training and
testing, the rats received their entire daily complement of food
during the running session. The rats were weighed daily and main-
tained above 80% free-feed weight throughout the experiment.
The rats were handled for 15 min each day. On days in which a rat
foraged in the arena, the rats were handled after foraging. All pro-
cedures were approved by the IACUC at the University of Minne-
sota and were in accordance with National Institutes of Health
(NIH) animal care guidelines.

Task and Behavior

The rats were trained to forage for food pellets in a black-walled
cylindrical arena. The diameter of the arena was 91.5 cm and the
height of the cylinder wall was 56 cm. A white cue-card subtended
100° of the arena wall; however, extensive distal cues were available
outside the cylinder. Animals were brought into the experiment
room inside their cage and placed in a terra cotta flower pot with
towels for a 5-min pre-task recording. Rats were then placed near
the center of the environment to begin the task. During the task,
rats foraged for 20 min for 45-mg pellets (Research Diets, New
Brunswick, NJ). Pellets were dropped randomly at a Poisson inter-
val (� � 10-s mean) from three automatic food dispensers (Med-
Associates, St. Albans, VT) placed at the top of the cylinder wall
and separated by approximately 120°. Pellets generally covered the
entire field. Following the task, the rats were immediately placed in
the terra cotta flower pot for a 5-min post-task recording. The rats
were trained for at least 2 weeks before surgery to ensure coverage
of the entire open field. Following surgery and recovery, the ani-
mals were re-trained on the task until they reached pre-training
activity levels. Rats were not explicitly disoriented at any time
during training.

Electrode Implantation

The rats were implanted with 14-tetrode hyperdrives (David
Kopf Instruments, Tujunga, CA). Twelve tetrodes were used to
record neural activity, and two single-wire electrodes were used as
references. Tetrodes were constructed from four lengths of
0.013-mm wire insulated with polyamide (Kanthal Precision
Wire, Palm Coast, FL). Rats were anesthetized with Nembutal
(sodium pentobarbital, 40–50 mg/kg, Abbott Laboratories, North
Chicago, IL) and the area of the implantation was shaved.

The rats were then placed on a stereotaxic apparatus (Kopf) and
0.1-ml Dual-cillin (Phoenix Pharmaceutical, St. Joseph, MI) was
injected intramuscularly into each hindlimb. During surgery, an-
esthesia was maintained using isoflurane (vaporized to a level of
0.5–2% isoflurane in medical-grade oxygen). The scalp was then
disinfected with alcohol and swabbed with Betadine (Purdue Fred-
erick, Norwalk, CT). The skin overlying the skull was incised and
retracted, and the underlying fascia was cleared from the surface of
the skull. Excess bleeding was stopped by application of hydrogen
peroxide followed by cautery of the retracted fascia. Anchor screws
and one ground screw were placed in the skull, and a 1.8-mm-
diameter craniotomy was opened using a surgical trephine (Fine
Science Tools, Foster City, CA). The hyperdrive was positioned
over right postsubiculum (bregma �7.0-mm AP, 2.0–2.4-mm
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ML), and lowered to 1 mm below the surface of the skull. The
craniotomy was protected using silastic (Dow Corning 3140) and
the hyperdrive was secured in place with dental acrylic (Perm Re-
line and Repair Resin, Hygenic Corp., Akron, OH). Following
surgery, 10 ml sterile saline (0.9%) was administered subcutane-
ously, and all tetrodes were advanced approximately 1 mm. Ani-
mals were allowed to recover in an incubator until they were am-
bulatory, which was usually 1–2 h following surgery. Once the
animals were ambulatory, 0.8 mL Children’s Tylenol was admin-
istered orally. For 2 days following surgery, rats had access to water
containing Children’s Tylenol (25 ml in 275 ml of water). The rats
were allowed 2 days to recover from surgery before resuming be-
havioral experiments.

Neurophysiology

Neural activity was recorded using a 54-channel Cheetah re-
cording system (Neuralynx, Tucson, AZ). Voltage was sampled at
32 kHz for each channel and filtered between 600 Hz and 6 kHz.
When the voltage on any of the four channels of a single tetrode
reached threshold, a 1-ms window of the spike waveform on each
of the four channels on the tetrode was recorded and time-stamped
with microsecond resolution (Neuralynx). Following the experi-
ment, spikes were manually clustered into putative cells on the
basis of their waveform properties (MClust 3.0; Redish and
Schmitzer-Torbert, 2002), based on automatically-derived clusters
found via k-means and expectation-maximization algorithms
(KlustaKwik 1.0; Harris, 2002). Waveform properties used for
clustering were energy, peak amplitude, valley amplitude, spike
width, and principal components.

Behavioral Data Collection

A 12-cm boom with a blue LED at the front and a red LED at
the back was attached to the head stage during recording sessions.
The position of each LED was recorded at 60 Hz via a video
camera mounted 190 cm above the open field and standard video-
tracking software (Neuralynx). Video tracker samples were re-
moved in which the view of one or both LEDs was obstructed or
the light threshold was not reached. After each session, the HD was
computed by finding a vector defined by the position of the blue
LED relative to the red LED and taking the inverse tangent of the
relative position to obtain an angle between �180° and 180°.

Data Analysis

Spike trains were binned using 2-ms bins and convolved with a
Gaussian (SD � 1 s) to obtain an estimation of continuous firing
rate. Estimated continuous firing rate samples were then resampled
at 60 Hz in order to temporally align these values with video
tracker samples.

Watson’s U2 test

Watson’s U2-test was used to determine the extent to which a
spike train encoded orientation information. Watson’s U2-test is a
nonparametric test for data drawn from a circular distribution.
Whereas most decoding measures require binning of the stimulus

or response variable (e.g., orientation, spike data), Watson’s U2-
test compares distributions directly from observed samples. The
null hypothesis is that the sample and test distributions are the
same. The sample distribution was constructed by taking the rat’s
orientation at the time of each spike, and the test distribution was
constructed by taking the orientation at each videotracker sample.
It is important to note that Watson’s statistical test does not have
the same unimodal assumptions required by other standard para-
metric tests for circular data (e.g., Rayleigh tests) and, conse-
quently, allows measurement of directional information from both
unimodal and multimodal distributions (Zar, 1999).

Watson’s U2 effectively includes a measure of reliability in its
measurement of orientation sensitivity. As can be seen in Figure 3,
raw tuning curve shape is insufficient to determine whether orien-
tation tuning is reliable across the session. A bootstrap (Efron,
1982) was used to visualize the reliability of observed tuning
curves. For each cell, the orientation and orientation-at-time-of-
spike distributions were randomly resampled 50 times at 20%
density. A tuning curve was construced from each of these resam-
plings. Plotting the 50 bootstrap tuning curves allows visual in-
spection of the robustness of the actual tuning curve (see Fig. 3).
An arbitrary cell selection threshold of U2 � 10 was used to select
“reliable” orientation sensitive cells.

A comparison of U2 and mutual information (Im) revealed that
the log-transformed mutual information value was correlated with
the log transformed U2 value (r2 � 0.71). Furthermore, similar sets
of cells were selected at thresholds of U2 � 10 and Im � 0.5 bits.
The calculation of mutual information, however, requires binning
both stimulus and response variables; therefore, Watson’s U2 was
used to select orientation sensitive cells.

Reconstruction

Vector reconstruction

The population vector (Georgopoulos et al., 1983, also known
as the vector-mean, Mardia, 1972; Zar, 1999), reconstructs orien-
tation from neural populations via linear combinations of firing-
rate-weighted basis vectors, given by the preferred direction of each
cell. The preferred direction, L� i, is found as the weighted mean of
the cell’s firing rate over all possible directions. These vectors are
then weighted by the cell’s firing rate at time t, fi(t), to yield a
reconstructed value at each time t, �est(t).

�est(t) � angle��
i

fi(t)L� i� (1)

Behavioral and neural data were divided into two halves by split-
ting the session into interleaved 15-s bins. Firing rates were selected
from one half of the data and the basis vectors, L� i, were calculated
using tuning curves generated from the other half of the data.

Optimal linear estimator

The optimal linear estimator method (OLE) (Salinas and Ab-
bott, 1994) calculates basis vectors such that it minimizes the error
between the reconstructed and the actual vectors. Unlike popula-

88 JOHNSON ET AL.



tion vector reconstruction, OLE does not require a uniform distri-
bution of preferred directions. In OLE, correlations between tun-
ing curves are exploited to remap the original basis vectors, given
by preferred directions, to an optimum set of vectors, producing a
new vector, D� i, for each cell. These vectors are then weighted by
the cell’s firing rate at time t, fi(t), to yield a reconstructed value at
each time t, �est(t).

�est(t) � angle��
i

fi(t)D� i� (2)

As with vector reconstruction, behavioral and neural data were
divided into two halves by splitting the session into interleaved
15-s bins. Firing rates were selected from one half of the data and
the basis vectors, D� i, were calculated using tuning curves generated
from the other half of the data.

Bayes method

The Bayesian method of reconstruction is a probability-based
method of reconstruction using Bayes rule.

P(��n) �
P(n��)P(�)

P(n)
(3)

where n � (nl, . . . , ni) is the number of spikes fired by each cell
during a given time interval, �. Following the single-step Bayesian
reconstruction method outlined by Zhang et al. (1998), the prob-
ability distribution over � given the activity of the ensemble, n, can
be computed. The reconstructed orientation, �est, is given by the
maximally likely orientation at each time point:

�est(t) � arg�max[P(��n)] (4)

The method used (Zhang et al., 1998) assumes that the cells are
Poisson and independent. Although neither of these assumptions
are completely valid for our data, the method is not particularly

sensitive to them, and Bayesian reconstruction was expected to
reconstruct the animal’s orientation reasonably well.

Again, behavioral and neural data were divided into two halves
by splitting the session into interleaved 15-s bins. The time interval
� was set to 1 s. The probabilities and tuning curves were calculated
using one-half of the data, then used to reconstruct the other half
head direction from the ensemble neural activity, n.

Reconstruction accuracy—error angle

Reconstruction accuracy was measured by comparing the recon-
structed HD, �est(t), with the actual HD at time t, �(t), producing
an error angle (a value between �180° and 180°):

E�(t) � �(t)��est(t) (5)

Two measures were calculated for each session: median recon-
structed error (median (E�)) and median absolute error
(median(�E��)). Median error provides a measure of the inherent
bias in the reconstruction, while median absolute error provides a
measure of the accuracy of the reconstruction.

Representational quality—coherency

Although reconstruction error measures the quality of recon-
struction, it does not measure the quality of representation. For
example, even random noise will yield a reconstructed HD value.
An important question is thus to measure the quality of the repre-
sentation. Redish et al. (2000) proposed measuring representation
quality as the internal consistency of the ensemble, which they
referred to as the coherency of the ensemble. Jackson and Redish
(2003) presented a generalized coherency method that was appli-
cable to any ensemble recording. Essentially, coherency measures
the probability that the actual and expected activity of the system
are the same. Mathematically, we calculate the actual and expected
activity packets (A(�,t) and Aest(�,t), respectively) as the sum of

FIGURE 1. Examples of cells sensitive to orientation. Each dot in
the top plot of in each panel represents the animal’s head direction at
each point in time. Each gray circle indicates the time and orientation
of the animal when the cell fired a spike. Darkness of the circle indi-

cates firing rate with darker circles indicating higher firing rates. (See
Materials and Methods for details on estimation of instantaneous
firing rate.) The U2 values for each cell shown (from left to right) are
66.7, 145.4, and 557.3, respectively.
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the tuning curves of the cells, weighted by their firing rates. The
actual activity packet, A(�,t), is based on the actual firing rates,
while the expected activity packet, Aest(�,t), is based on the ex-
pected firing rates, given the reconstructed orientation of the pop-
ulation at time t, �est(t). Note that, like a tuning curve, the activity
packet is a function over the HD variable �; unlike the tuning
curve, however, the activity packet is also time dependent. Coher-
ency is based on a comparison of the two activity packets (Redish et
al., 2000) and was formally developed by Jackson and Redish
(2003). In this formulation, an intermediate quantity called inco-
herency, I, quantifies the difference between activity packets.
While Jackson and Redish (2003) calculated this quantity as the
root-mean-squared error (RMSE) of the expected and actual activ-
ity packets, they also noted that incoherency can be calculated in a
variety of ways. We calculated incoherency as

I(t)�
var�[A(�,t)�Aest(�,t)]

�
�

Aest(�,t)d�

(6)

where var� (A(�,t) � Aest(�,t)) is the variance of the difference
between activity packets over � at each time point t. Both the
variance-based method and the RMSE-based method compare the
shape of the activity packets, but the variance-based method has an
added advantage because it is independent of baseline ensemble
activity level.

From the incoherency measurement, we calculate the probabil-
ity that the two curves are different through standard bootstrap

techniques (Efron, 1982), producing a measurement between 0
(incoherent, i.e. unlikely that the actual packet was drawn from the
same distribution as the expected) and 1 (coherent, i.e., likely that
the actual and expect packets were drawn from the same distribu-
tion). Coherency values were found for each reconstructed HD
sample. As in the reconstruction methods, data from a single ses-
sion were halved using interleaved 15-s bins. The incoherency
distributions were obtained from one half and used to provide a
probability estimate for the other half.

HISTOLOGY

Following the experiment, small lesions were made by passing
current through the recording electrodes to identify recording sites
(5 �A for 5 s). After 24–48 h, the rats were sacrificed by overdose
of nembutal (1.0 ml) and perfused intracardially first with saline,
and then with 10% formalin. After the brains were removed, they
were placed in 10% formalin overnight, then in a 30% sucrose/
formalin mixture until they were sliced. Each brain was sliced using
a freezing microtome in 40-�m coronal sections, stored in forma-
lin at 4°C until staining, and stained with cresyl violet.

RESULTS

A total of 390 spike trains were recorded from two rats over 17
recording sessions. Spike trains were identified as traditional head

FIGURE 2. Cresyl violet stain of a coronal section showing tetrode gliosis mark in postsubicu-
lum. The postsubiculum is bounded medially (filled triangle) by the retrosplenial cortex and
laterally by the subiculum. This slice lies approximately 6-mm posterior to bregma. [R019 Tray-07
Slice-01].
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direction cells as defined by Taube et al. (1990a) (n � 38, visual
inspection), cells sensitive to directional information (n � 45,
U2 � 10), or cells insensitive to directional information (n � 345,
U2 � 10). Figure 1 shows examples of typical HD cells.

Histology

Histology verified that tetrodes from the first rat (R019) were in
postsubiculum (see Fig. 2); however, the location of tetrodes in the
second rat (R026) could not be ascertained due to damage that
occurred during brain extraction. Because cells recorded from the
second rat (R026) were similar to those from the first rat, we
assume that all tetrodes were placed in postsubiculum.

Neural Ensembles of HD Cells

Between 3 and 62 total spike trains were recorded in each ses-
sion, producing up to nine HD-sensitive cells, and up to eight
classical head direction cells. Figure 3 shows an example of HD
tuning curves for an ensemble of 38 cells simultaneously recorded
and sorted by decreasing U2 values. Table 1 provides a session-by-
session report of the number of cells recorded for sessions in which
more than three cells were recorded.

Reconstruction

Under conditions when environment cues are manipulated, in-
dividual HD cells typically display similar responses with similar

FIGURE 3. Head direction tuning curves for an ensemble of 38
simultaneously recorded cells. Each panel shows the tuning curve for
one cell. The orientation of the animal is shown on the x-axis (�180°
to 180°) and the firing rate on the y-axis (range 0 Hz to indicated
value). Tuning curve of the cell is shown in black. The gray area

represents tuning curves derived from random resamplings of 20% of
the spikes and orientation samples (see Materials and Methods for
details). Fifty resamples were used. This provides for visualization of
the reliability of the tuning curves. Session [R026-2002-12-15].
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time courses (Taube et al., 1990b; Goodridge and Taube, 1995;
Taube and Burton, 1995; Knierim et al., 1995, 1998; Blair and
Sharp, 1995, 1996; Zugaro et al., 2003). When pairs have been
simultaneously recorded, they have responded similarly (Taube et
al., 1990b, 1996; Goodridge and Taube, 1995; Taube and Burton,
1995), and suggest that the population of cells act in concert.
Tuning curves, such as those shown in Figure 1, suggest that vec-
tor-based reconstruction of HD should be possible. Non-unimo-
dal tuning curves are not appropriate for vector-based reconstruc-
tion methods but are appropriate for probabalistic methods such as
Bayesian reconstruction. While previous research clearly demon-
strates that single and multiple head direction cells respond to
changes in orientation, it does not address whether the system
encodes orientation within the population. The central tenet of
decoding measures such as reconstruction is to determine whether
enough information exists within the population to form a general
signal, in the present context, head direction. To analyze this ques-
tion further, we compared the vector-based population vector re-
construction (Georgopoulos et al., 1983; Mardia, 1972) and OLE
reconstruction (Salinas and Abbott, 1994), and the probability-
based Bayesian reconstruction (Zhang et al., 1998).

Reconstruction parameterization

Tuning curves and single cell firing probability estimates used in
vector- and probability-based reconstruction, respectively, were
found by dividing the orientation space into 36 10° bins. As stated
above, estimated continuous firing rates were found by binning the
number of spikes into 2-ms time bins, then convolving these dis-
crete values with a Gaussian with standard deviation of 1 s. Selec-
tion of the orientation bin size and the standard deviation of the
firing rate convolution Gaussian were found by parameterizing and
selecting the combination of parameters that typically resulted in
the smallest median reconstruction error over all five sessions. We
tested binning orientations into 20°, 10°, and 6° bins and standard
deviations for firing rate convolution from 0.5 s to 1.5 s in 0.1-s
steps. The median reconstruction error changed little when the
orientation bin size changed; in contrast, the median reconstruc-
tion error showed a marked decrease (improved) when the firing

rate convolution Gaussian standard deviation was 0.8–1.2 s. A
mixed-factors analysis of variance (ANOVA) was used to deter-
mine whether the choice of parameters differentially affected each
reconstruction method. A main effect was found for the recon-
struction method (F(2,396) � 131, P � 0.05). As expected, me-
dian absolute reconstruction error for the population vector
method was significantly larger than both OLE and Bayesian
methods (post hoc HSD, P � 0.05). No other differences or in-
teractions were observed in parameterization due to reconstruction
method (P 	 0.05).

FIGURE 4. Reconstruction of head direction using OLE (top),
Bayes (middle), and vector (bottom) reconstruction. Session [R026-
2002-12-15]. Data were halved using 15-s intervals. Nine cells met the
threshold of U2 > 10 (see Materials and Methods) and were used for
reconstruction. Gaps in the observed orientation resulted from an
obstructed view of one or both of the tracking LEDs.

TABLE 1.

Session-by-Session Totals of the Number of Cells Recorded, Number
of Traditional Head Direction Cells (Taube et al., 1990a), and
Number of Cells Used for Reconstruction for Sessions in Which
Reconstruction Was Attempted*

Animal Date
Cells
used

Traditional
HD cells

Total cells
recorded

R019 2002-06-27 4 3 20
2002-06-29 6 5 27
2002-07-03 6 5 62

R026 2002-12-15 9 8 38
2002-12-29 4 4 34

*Cells identified as directional and used for reconstruction had values
of U2 � 10. All traditional head direction cells had values of U2 � 10.
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Reconstruction results

HD reconstruction was attempted for all sessions with three or
more directionally sensitive cells. Figure 4 shows an example of
reconstruction. Table 2 provides summary statistics of reconstruc-
tion for each session. Reconstruction using OLE and Bayes meth-
ods provided unbiased, accurate orientation estimates across ses-
sions. Estimates of reconstruction bias were found by taking the
median reconstruction error. Reconstruction using OLE and
Bayes methods consistently showed little bias as both methods
correct for asymmetric distributions of tuning curves. Because the
distribution of tuning curves of the ensemble were often not uni-
formly distributed and population vector reconstruction makes no
correction for this, the bias of population vector reconstruction
varied greatly across sessions. Median absolute reconstruction error
was used to assess reconstruction accuracy. Because only cells with
unimodal tuning curves were used, absolute reconstruction error
estimates for OLE and Bayes methods were similar within sessions.
Like reconstruction bias, the accuracy of population vector based
reconstruction displayed large session to session variability.

Coherency

Although reconstruction error measures the quality of recon-
struction, it does not measure the quality of representation. Rep-
resentational quality can be measured as the internal consistency of
the neural ensemble (Redish et al., 2000; Jackson and Redish,
2003). By definition, high coherency values are associated with
relative consistency within the ensemble and should produce, on
average, good reconstruction. In contrast, low coherency values are
associated with relative inconsistency within the ensemble and
should produce reconstruction errors spread more randomly over
all possible orientations.

Actual and expected activity packets were calculated as described
in the Materials and Methods. Coherency was found for each
reconstructed head direction sample. Linear regression was used to
determine whether high coherency values were associated with
relatively accurate reconstruction and low coherency values were
associated with relatively inaccurate reconstruction within the ses-

sion (Fig. 5). If the expected increasing coherency-decreasing error
trend occurred, the slope of the fitted line should be negative,
meaning that absolute reconstruction error decreased (improved)
with increasing (improved) coherency. The expected coherency-
error trend was significant for each reconstruction method (OLE:
t(4) � �2.67, P � 0.05; Bayes: t(4) � �3.12, P � 0.05; popu-
lation vector: t(4) � �2.90, P � 0.05; one-tailed t-tests) (see Fig.
6). Coherency values and the coherency-error trend were depen-
dent on the method of reconstruction and the activity of the en-
semble (see Table 3). It should be noted that the coherency-error
trend was maintained for population vector reconstruction because
coherency is an indicator of relative reconstruction accuracy, not
absolute reconstruction accuracy.

Coherency values and the coherency-error trend were depen-
dent on the ensemble activity. For example, while one session
([R019-2002-06-27]) did not follow the increasing coherency-
decreasing error trend, the ensemble consisted of cells with very
low firing rates compared with other sessions. Because expected
firing rates are based on mean firing rates, cells with low firing rates
are poorly approximated, particularly when a cell sometimes fails
to fire as the orientation passes through the cell’s preferred direc-
tion. In this sense, finding the expected firing rate by tuning curves
is inappropriate for cells with very low firing rates or cells that
burst. Actual and expected activity packets, which are calculated by
weighting tuning curves by firing rate and expected firing rate,
respectively, are then no longer useful for calculating coherency.

DISCUSSION

The present results show the first recordings of HD cell ensem-
bles, reconstruction of the head direction signal, and measurement
of the representation quality in the postsubiculum head direction
system. Moreover, the present results extend the findings of Jack-
son and Redish (2003) and demonstrate that coherency is a viable
and useful measure of ensemble representation in biological sys-
tems, in that low representation quality predicted unreliable recon-
struction.

TABLE 2.

Session-by-Session Results for Reconstruction

Animal Date

Median absolute error Median error

OLE Bayes Vector OLE Bayes Vector

R019 2002-06-27 40.5° 34.9° 67.5° 7.0° 6.6° �46.7°
2002-06-29 27.6° 29.6° 56.2° �4.8° �0.7° 3.6°
2002-07-03 42.0° 48.3° 57.6° �7.6° 15.9° 29.8°

R026 2002-12-15 22.3° 18.4° 25.9° �1.7° 0.1° 0.9°
2002-12-29 24.3° 24.9° 50.0° �3.4° 1.0° 11.5°

The median absolute error provides an estimate of the reconstruction accuracy and the median error
provides an estimate of the reconstruction bias. On average, Bayesian reconstruction performed best,
OLE performed nearly as well, and standard vector reconstruction performed most poorly.
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Tuning Curves

HD cells are defined to have a unimodal tuning curve (Taube et
al., 1990a), but postsubicular cells sensitive to head direction
which do not fit this definition have also been observed (Sharp,
1996). Watson’s U2 test provides a useful quantitative measure of
the directionality of cell response without explicit assumptions of
tuning curve shape. Although cells with multimodal tuning curves

were observed, these were typically low firing, and none met the
selection criterion to be used for reconstruction.

Implications of the Coherency Measurement

Jackson and Redish (2003) showed that coherency was useful
for detecting subtle changes in representation pertinent to different
dynamic states of head direction models. In this paper, we found
that coherency was a particularly useful measure of representa-
tional quality for biological investigations of head direction: inco-
herent ensembles generally showed poorer reconstruction than co-
herent ensembles. One interesting possibility is that an incoherent
representation may suggest a behaviorally relevant state. Coher-
ency as defined by Jackson and Redish (2003) is a linear measure.
Thus it could be implemented with biologically plausible neurons,
and may be exploited by the head direction system to determine
the confidence of the animal’s sense of HD.

Implications for Modeling

While theories of how HD cells maintain their correlations with
orientation have converged on the idea that the system forms an
attractor network (Skaggs et al., 1995; Redish et al., 1996; Zhang,
1996; Blair et al., 1998; Redish, 1999; Goodridge and Touretzky,
2000; Sharp et al., 2001a), the location of an attractor network is
still under debate. Redish et al. (1996) suggested that attractor
networks exist within both postsubiculum and the anterior dorsal
thalamus. A later model developed by Goodridge and Touretzky
(2000) placed the attractor network in postsubiculum, but up-
dated through a lateral mammillary and anterior thalamic loop to

FIGURE 6. Mean slope of the absolute reconstruction error ver-
sus coherency for each reconstruction method. Error bars indicate the
standard error of the mean. The slope of the fitted line was signifi-
cantly less than zero for each reconstruction method (one-tailed t-test,
P < 0.05). See Table 3 for session-by-session results.

FIGURE 5. Absolute reconstruction error as a function of activity
packet coherency (gray points) using OLE (top), Bayes (middle), and
population vector (bottom) reconstruction for one session [R026-
2002-12-29]. The data were fit by a first-order polynomial (black
dotted line) using least squares. The mean reconstruction error for
each 0.1 coherency bin is shown by the solid black line.
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reflect anatomical connectivity and tuning curve modulation. An
alternative view presented by Blair and Sharp (Blair et al., 1997;
Sharp et al., 2001a) suggested an interaction between the lateral
mammillary nucleus and the dorsal tegmental nucleus as the locus
of the attractor network. Despite these different perspectives, most
theories assume that postsubiculum contains a complete HD sig-
nal (Taube et al., 1996; Redish, 1999; Sharp et al., 2001a). The
data presented here confirm that postsubiculum does contain a
complete HD signal. Lesion data showing that postsubicular tun-
ing curves are dependent on anterior thalamic integrity (Good-
ridge and Taube, 1997) suggest that the postsubiculum may re-
ceive the HD signal from the anterior thalamus. However, it is not
known whether the postsubiculum would continue to show a co-
herent representation (albeit not related to the orientation of the
animal) after anterior thalamic lesions.

Models of HD predict the transformation of the HD signal
between one area of the brain and another. Measures of decoding
and representation quality are necessary to test how the signal is
transformed and whether it is maintained as a unified signal at each
point. Previous investigations of HD depended on average activity
over many trials to obtain tuning curves. The present study used
both decoding and representation quality measures to assess neural
and behavioral correlations. These measures allow observation of
dynamic processes over shorter time periods than tuning curves.
Critical tests of head direction theories, particularly those based on
attractor networks, depend on dynamics. Although the present
study did not explicitly address dynamics, it demonstrates that
decoding and representation quality measures will be useful in
exploring the head direction system of the rat.
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